state
            numqi.state.W(n)
    get the W-state wiki-link
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                n
             | 
            
                  int
             | 
            
               the number of qubits  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  ndarray
             | 
            
               the W-state,   | 
          
            numqi.state.Wtype(coeff)
    get the W-type state
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                coeff
             | 
            
                  ndarray
             | 
            
               the coefficients of the W-type state,   | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  ndarray
             | 
            
               the W-type state,   | 
          
            numqi.state.get_Wtype_state_GME(a, b, c)
    get the geometric measure of the W-type state arxiv-link
Analytic Expressions for Geometric Measure of Three Qubit States
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                a
             | 
            
                  float
             | 
            
               the coefficient of |100>  | 
            required | 
                b
             | 
            
                  float
             | 
            
               the coefficient of |010>  | 
            required | 
                c
             | 
            
                  float
             | 
            
               the coefficient of |001>  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  float
             | 
            
               the geometric measure of the W-type state  | 
          
            numqi.state.GHZ(n=2)
    get the GHZ state wiki-link
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                n
             | 
            
                  int
             | 
            
               the number of qubits  | 
            
                  2
             | 
          
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  ndarray
             | 
            
               the GHZ state,   | 
          
            numqi.state.Bell(i=0)
    get the Bell state
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                i
             | 
            
                  int
             | 
            
               the index of the Bell state, \(i\in[0,3]\)  | 
            
                  0
             | 
          
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  ndarray
             | 
            
               the Bell state,   | 
          
            numqi.state.Dicke(*klist)
    return Dicke state for n qudits
see arxiv-link for more information
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                klist
             | 
            
                  tuple[int]
             | 
            
               list of int, each int is the number of qudit in each level,   | 
            
                  ()
             | 
          
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  ndarray
             | 
            
               shape (dim**num_qudit)  | 
          
            numqi.state.get_qubit_dicke_state_GME(n, k)
    get the geometric measure of entanglement for the Dicke state
Matrix permanent and quantum entanglement of permutation invariant states doi-link
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                n
             | 
            
                  int
             | 
            
               the number of qubits  | 
            required | 
                k
             | 
            
                  int
             | 
            
               the number of excitations  | 
            required | 
            numqi.state.Werner(d, alpha)
    get the Werner state wiki-link quantiki-link
alpha: \([-1,1]\)
SEP: \(\left[-1,\frac{1}{d} \right]\)
(1,k)-ext: \(\left[-1, \frac{k+d^2-d}{kd+d-1} \right]\)
(1,k)-ext boundary: Compatible quantum correlations: Extension problems for Werner and isotropic states doi-link
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                d
             | 
            
                  int
             | 
            
               the dimension of the Hilbert space  | 
            required | 
                alpha
             | 
            
                  float
             | 
            
               the parameter of the Werner state  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  ndarray
             | 
            
               the density matrix of the Werner state  | 
          
            numqi.state.get_Werner_ree(d, alpha)
    get the relative entropy of entanglement (REE) of the Werner state
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                d
             | 
            
                  int
             | 
            
               the dimension of the Hilbert space  | 
            required | 
                alpha
             | 
            
                  float
             | 
            
               the parameter of the Werner state  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  float
             | 
            
               the relative entropy of entanglement of the Werner state  | 
          
            numqi.state.get_Werner_eof(dim, alpha)
    get the entanglement of formation (EOF) of the Werner state
reference: Entanglement of formation and concurrence for mixed states doi-link
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                dim
             | 
            
                  int
             | 
            
               the dimension of the Hilbert space  | 
            required | 
                alpha
             | 
            
                  (ndarray, float)
             | 
            
               the parameter of the Werner state  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  (ndarray, float)
             | 
            
               the entanglement of formation of the Werner state  | 
          
            numqi.state.get_Werner_GME(d, alpha)
    get the geometric measure of entanglement (GME) of the Werner state
Geometric measure of entanglement and applications to bipartite and multipartite quantum states doi-link (eq-51)
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                d
             | 
            
                  int
             | 
            
               the dimension of the Hilbert space  | 
            required | 
                alpha
             | 
            
                  (float, ndarray)
             | 
            
               the parameter of the Werner state  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  (float, ndarray)
             | 
            
               the geometric measure of entanglement of the Werner state  | 
          
            numqi.state.Isotropic(d, alpha)
    get the isotropic state quantiki-link
alpha: \(\left[-\frac{1}{d^2-1}, 1\right]\)
SEP: \(\left[-\frac{1}{d^2-1}, \frac{1}{d+1}\right]\)
(1,k)-ext: \(\left[-\frac{1}{d^2-1}, \frac{kd+d^2-d-k}{k(d^2-1)}\right]\)
Compatible quantum correlations: Extension problems for Werner and isotropic states doi-link
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                d
             | 
            
                  int
             | 
            
               the dimension of the Hilbert space  | 
            required | 
                alpha
             | 
            
                  float
             | 
            
               the parameter of the isotropic state  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  ndarray
             | 
            
               the density matrix of the isotropic state  | 
          
            numqi.state.get_Isotropic_ree(d, alpha)
    get the relative entropy of entanglement (REE) of the isotropic state
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                d
             | 
            
                  int
             | 
            
               the dimension of the Hilbert space  | 
            required | 
                alpha
             | 
            
                  float
             | 
            
               the parameter of the isotropic state  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  float
             | 
            
               the relative entropy of entanglement of the isotropic state  | 
          
            numqi.state.get_Isotropic_eof(dim, alpha)
    get the entanglement of formation (EOF) of the isotropic state
reference: Entanglement of formation and concurrence for mixed states doi-link
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                dim
             | 
            
                  int
             | 
            
               the dimension of the Hilbert space  | 
            required | 
                alpha
             | 
            
                  (ndarray, float)
             | 
            
               the parameter of the isotropic state  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  (ndarray, float)
             | 
            
               the entanglement of formation of the isotropic state  | 
          
            numqi.state.get_Isotropic_GME(d, alpha)
    get the geometric measure of entanglement (GME) of the isotropic state
Geometric measure of entanglement and applications to bipartite and multipartite quantum states doi-link (eq-54)
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                d
             | 
            
                  int
             | 
            
               the dimension of the Hilbert space  | 
            required | 
                alpha
             | 
            
                  (float, ndarray)
             | 
            
               the parameter of the isotropic state  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  (float, ndarray)
             | 
            
               the geometric measure of entanglement of the isotropic state  | 
          
            numqi.state.maximally_entangled_state(d)
    get the maximally entangled state quantiki-link
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                d
             | 
            
                  int
             | 
            
               the dimension of the Hilbert space  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  ndarray
             | 
            
               the maximally entangled state,   | 
          
            numqi.state.maximally_coherent_state(dim, alpha=None)
    get the interpolation between the maximally coherent state and the maximally mixed state
reference: Maximally coherent states and coherence-preserving operations arxiv-link
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                dim
             | 
            
                  int
             | 
            
               the dimension of the state  | 
            required | 
                alpha
             | 
            
                  (None, float)
             | 
            
               the interpolation parameter, None for the maximally coherent state  | 
            
                  None
             | 
          
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  ndarray
             | 
            
               the maximally coherent state. when   | 
          
            numqi.state.get_2qutrit_Antoine2022(q)
    an example of SEP-PPT-NPT states in 2-qutrit system
reference: Building separable approximations for quantum states via neural networks doi-link
(0.5,1.5]: PPT (1.5,2.5]: NPT
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                q
             | 
            
                  float
             | 
            
               q in [-2.5,2.5]  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
rho |             
                  ndarray
             | 
            
               9x9 density matrix  | 
          
            numqi.state.get_bes2x4_Horodecki1997(b)
    get the 2x4 bound entangled state proposed by Horodecki et al. in 1997
reference: Separability criterion and inseparable mixed states with positive partial transposition doi-link
reference: Certifying Quantum Separability with Adaptive Polytopes arxiv-link
b in [0,1]
PPT range of b: [0, 1]
SEP: b=0 or b=1
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                b
             | 
            
                  float
             | 
            
               the parameter of the state  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  ndarray
             | 
            
               the density matrix of the state, shape=(8,8)  | 
          
            numqi.state.get_bes3x3_Horodecki1997(a)
    get the 3x3 bound entangled state proposed by Horodecki et al. in 1997
reference: Separability criterion and inseparable mixed states with positive partial transposition doi-link
reference: Certifying Quantum Separability with Adaptive Polytopes arxiv-link
a in [0,1]
PPT range of a: [0, 1]
SEP: a=0 or a=1
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                a
             | 
            
                  float
             | 
            
               the parameter of the state  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
ret |             
                  ndarray
             | 
            
               the density matrix of the state, shape=(9,9)  | 
          
            numqi.state.get_4qubit_special_state_gme(key, plist)
    get the geometric measure of entanglement (GME) for some special 4-qubit states
reference: Multiparticle entanglement under the influence of decoherence doi-link
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                key
             | 
            
                  str
             | 
            
               the type of the special state, one of {'cluster','ghz','w','dicke'}  | 
            required | 
                plist
             | 
            
                  (float, ndarray)
             | 
            
               the decoherence parameter, \(p\in[0,1]\). For \(p=0\), the state is incoherent (diagonal only)  | 
            required | 
Returns:
| Name | Type | Description | 
|---|---|---|
rho |             
                  ndarray
             | 
            
               the density matrix of the special state, shape=(16,16), or (n,16,16) if   | 
          
gme |             
                  (float, ndarray)
             | 
            
               GME of the special state, or (n,) if   |