state
numqi.state.W(n)
get the W-state wiki-link
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n
|
int
|
the number of qubits |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
ndarray
|
the W-state, |
numqi.state.Wtype(coeff)
get the W-type state
Parameters:
Name | Type | Description | Default |
---|---|---|---|
coeff
|
ndarray
|
the coefficients of the W-type state, |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
ndarray
|
the W-type state, |
numqi.state.get_Wtype_state_GME(a, b, c)
get the geometric measure of the W-type state arxiv-link
Analytic Expressions for Geometric Measure of Three Qubit States
Parameters:
Name | Type | Description | Default |
---|---|---|---|
a
|
float
|
the coefficient of |100> |
required |
b
|
float
|
the coefficient of |010> |
required |
c
|
float
|
the coefficient of |001> |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
float
|
the geometric measure of the W-type state |
numqi.state.GHZ(n=2)
get the GHZ state wiki-link
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n
|
int
|
the number of qubits |
2
|
Returns:
Name | Type | Description |
---|---|---|
ret |
ndarray
|
the GHZ state, |
numqi.state.Bell(i=0)
get the Bell state
Parameters:
Name | Type | Description | Default |
---|---|---|---|
i
|
int
|
the index of the Bell state, \(i\in[0,3]\) |
0
|
Returns:
Name | Type | Description |
---|---|---|
ret |
ndarray
|
the Bell state, |
numqi.state.Dicke(*klist)
return Dicke state for n qudits
see arxiv-link for more information
Parameters:
Name | Type | Description | Default |
---|---|---|---|
klist
|
tuple[int]
|
list of int, each int is the number of qudit in each level, |
()
|
Returns:
Name | Type | Description |
---|---|---|
ret |
ndarray
|
shape (dim**num_qudit) |
numqi.state.get_qubit_dicke_state_GME(n, k)
get the geometric measure of entanglement for the Dicke state
Matrix permanent and quantum entanglement of permutation invariant states doi-link
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n
|
int
|
the number of qubits |
required |
k
|
int
|
the number of excitations |
required |
numqi.state.Werner(d, alpha)
get the Werner state wiki-link quantiki-link
alpha: \([-1,1]\)
SEP: \(\left[-1,\frac{1}{d} \right]\)
(1,k)-ext: \(\left[-1, \frac{k+d^2-d}{kd+d-1} \right]\)
(1,k)-ext boundary: Compatible quantum correlations: Extension problems for Werner and isotropic states doi-link
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d
|
int
|
the dimension of the Hilbert space |
required |
alpha
|
float
|
the parameter of the Werner state |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
ndarray
|
the density matrix of the Werner state |
numqi.state.get_Werner_ree(d, alpha)
get the relative entropy of entanglement (REE) of the Werner state
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d
|
int
|
the dimension of the Hilbert space |
required |
alpha
|
float
|
the parameter of the Werner state |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
float
|
the relative entropy of entanglement of the Werner state |
numqi.state.get_Werner_eof(dim, alpha)
get the entanglement of formation (EOF) of the Werner state
reference: Entanglement of formation and concurrence for mixed states doi-link
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dim
|
int
|
the dimension of the Hilbert space |
required |
alpha
|
(ndarray, float)
|
the parameter of the Werner state |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
(ndarray, float)
|
the entanglement of formation of the Werner state |
numqi.state.get_Werner_GME(d, alpha)
get the geometric measure of entanglement (GME) of the Werner state
Geometric measure of entanglement and applications to bipartite and multipartite quantum states doi-link (eq-51)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d
|
int
|
the dimension of the Hilbert space |
required |
alpha
|
(float, ndarray)
|
the parameter of the Werner state |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
(float, ndarray)
|
the geometric measure of entanglement of the Werner state |
numqi.state.Isotropic(d, alpha)
get the isotropic state quantiki-link
alpha: \(\left[-\frac{1}{d^2-1}, 1\right]\)
SEP: \(\left[-\frac{1}{d^2-1}, \frac{1}{d+1}\right]\)
(1,k)-ext: \(\left[-\frac{1}{d^2-1}, \frac{kd+d^2-d-k}{k(d^2-1)}\right]\)
Compatible quantum correlations: Extension problems for Werner and isotropic states doi-link
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d
|
int
|
the dimension of the Hilbert space |
required |
alpha
|
float
|
the parameter of the isotropic state |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
ndarray
|
the density matrix of the isotropic state |
numqi.state.get_Isotropic_ree(d, alpha)
get the relative entropy of entanglement (REE) of the isotropic state
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d
|
int
|
the dimension of the Hilbert space |
required |
alpha
|
float
|
the parameter of the isotropic state |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
float
|
the relative entropy of entanglement of the isotropic state |
numqi.state.get_Isotropic_eof(dim, alpha)
get the entanglement of formation (EOF) of the isotropic state
reference: Entanglement of formation and concurrence for mixed states doi-link
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dim
|
int
|
the dimension of the Hilbert space |
required |
alpha
|
(ndarray, float)
|
the parameter of the isotropic state |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
(ndarray, float)
|
the entanglement of formation of the isotropic state |
numqi.state.get_Isotropic_GME(d, alpha)
get the geometric measure of entanglement (GME) of the isotropic state
Geometric measure of entanglement and applications to bipartite and multipartite quantum states doi-link (eq-54)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d
|
int
|
the dimension of the Hilbert space |
required |
alpha
|
(float, ndarray)
|
the parameter of the isotropic state |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
(float, ndarray)
|
the geometric measure of entanglement of the isotropic state |
numqi.state.maximally_entangled_state(d)
get the maximally entangled state quantiki-link
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d
|
int
|
the dimension of the Hilbert space |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
ndarray
|
the maximally entangled state, |
numqi.state.maximally_coherent_state(dim, alpha=None)
get the interpolation between the maximally coherent state and the maximally mixed state
reference: Maximally coherent states and coherence-preserving operations arxiv-link
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dim
|
int
|
the dimension of the state |
required |
alpha
|
(None, float)
|
the interpolation parameter, None for the maximally coherent state |
None
|
Returns:
Name | Type | Description |
---|---|---|
ret |
ndarray
|
the maximally coherent state. when |
numqi.state.get_2qutrit_Antoine2022(q)
an example of SEP-PPT-NPT states in 2-qutrit system
reference: Building separable approximations for quantum states via neural networks doi-link
(0.5,1.5]: PPT (1.5,2.5]: NPT
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q
|
float
|
q in [-2.5,2.5] |
required |
Returns:
Name | Type | Description |
---|---|---|
rho |
ndarray
|
9x9 density matrix |
numqi.state.get_bes2x4_Horodecki1997(b)
get the 2x4 bound entangled state proposed by Horodecki et al. in 1997
reference: Separability criterion and inseparable mixed states with positive partial transposition doi-link
reference: Certifying Quantum Separability with Adaptive Polytopes arxiv-link
b in [0,1]
PPT range of b: [0, 1]
SEP: b=0 or b=1
Parameters:
Name | Type | Description | Default |
---|---|---|---|
b
|
float
|
the parameter of the state |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
ndarray
|
the density matrix of the state, shape=(8,8) |
numqi.state.get_bes3x3_Horodecki1997(a)
get the 3x3 bound entangled state proposed by Horodecki et al. in 1997
reference: Separability criterion and inseparable mixed states with positive partial transposition doi-link
reference: Certifying Quantum Separability with Adaptive Polytopes arxiv-link
a in [0,1]
PPT range of a: [0, 1]
SEP: a=0 or a=1
Parameters:
Name | Type | Description | Default |
---|---|---|---|
a
|
float
|
the parameter of the state |
required |
Returns:
Name | Type | Description |
---|---|---|
ret |
ndarray
|
the density matrix of the state, shape=(9,9) |
numqi.state.get_4qubit_special_state_gme(key, plist)
get the geometric measure of entanglement (GME) for some special 4-qubit states
reference: Multiparticle entanglement under the influence of decoherence doi-link
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key
|
str
|
the type of the special state, one of {'cluster','ghz','w','dicke'} |
required |
plist
|
(float, ndarray)
|
the decoherence parameter, \(p\in[0,1]\). For \(p=0\), the state is incoherent (diagonal only) |
required |
Returns:
Name | Type | Description |
---|---|---|
rho |
ndarray
|
the density matrix of the special state, shape=(16,16), or (n,16,16) if |
gme |
(float, ndarray)
|
GME of the special state, or (n,) if |