Skip to content

entanglement distillation

Accessible in both numqi.entangle (recommended) and numqi.entangle.distillation

numqi.entangle.get_binegativity(rho, dimA, dimB)

calculate bi-negativity

reference: Entanglement Cost under Positive-Partial-Transpose-Preserving Operations doi-link

Parameters:

Name Type Description Default
rho (ndarray, Tensor)

density matrix, shape=(dimAdimB,dimAdimB)

required
dimA int

dimension of A

required
dimB int

dimension of B

required

Returns:

Name Type Description
ret ndarray

bi-negativity, shape=(dimAdimB,dimAdimB)

numqi.entangle.get_PPT_entanglement_cost_bound(rho, dimA, dimB)

calculate the lower and upper bound of PPT entanglement cost

reference: Entanglement Cost under Positive-Partial-Transpose-Preserving Operations doi-link

Parameters:

Name Type Description Default
rho ndarray

density matrix, shape=(dimAdimB,dimAdimB)

required
dimA int

dimension of A

required
dimB int

dimension of B

required

Returns:

Name Type Description
lower_bound float

lower bound of PPT entanglement cost

upper_bound float

upper bound of PPT entanglement cost

numqi.entangle.SearchMinimumBinegativityModel

Bases: Module

__init__(dimA, dimB)

search the minimum of binegativity

see also: get_binegativity

Parameters:

Name Type Description Default
dimA int

dimension of A

required
dimB int

dimension of B

required